x 2×2 4 x 2 x 2 2 x 3 x 3 2 2 x 3x 9 x2 4 x2 5x 6 x2 x 6 x2 5x 14 x2 4 x2 5x 14 x2 x 6 x2 5x 6 4 simplify 5 simplify 6 simplify 7 find the domain of x 3 8 7 5x 5x 1 5x 5x 1 5x 1 2 8 find the solution 1 – exclusivewritings.com

x2×24 

page1image39385728
page1image39379968

x2 (x2)2 x3 (x3)2

2 x3x9

page1image39380160
page1image39379584

x2 4 x2 5x 6 x2 x 6x2 5x 14

x2 4 x2 5x 14 x2 x 6 x2 5x 6 

page1image39383040
page1image39382848

  1. 4) Simplify
  2. 5) Simplify
  3. 6) Simplify
  4. 7) Find the domain of x  3 .

page1image39382272
page1image39383424

8  7  5x 5x

1  5x  5x 1 5x 1

page1image39384768
page1image39380352

2

page1image39356864

  1. 8) Find the solution of
  2. 9) Find the solution of
    1. 10) Find the solution of
    2. 11) Find the solution of
    3. 12) Find the solution of
    4. 13) Find the solution of

2x  3  9. 2x  3  9 .

2x  3  9 .

5  2x  3  7 . 5  2x  3  9 . 5  2x  3  9 .

  1. 14) Find the slope of the line passes through 2,4 and 3,1.
  2. 15) Find the slope and the y-intercept of the line 3y  5x  6.
  3. 16) Find the equation of the line with slope m  5 and passes

through 2,1.
17) Find he slope of the line parallel to the line 2 y  3x  4  0 .

18) Find he slope of the line perpendicular to the line 2y 3x 40.

19) Find the distance between the 3,1 and 2,1.
20) Find the midpoint of the segment with endpoints 4,7 &

12,5.

ORDER NOW